

DEPLOYING THE WORLDS SMALLEST FLOW BATTERY AT GRID SCALE

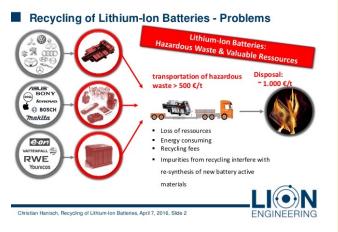
Battery Technologies Conference – South Africa – August 2021

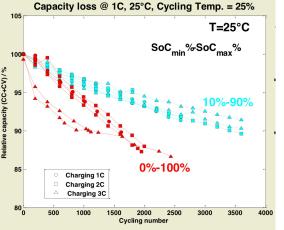
Simon Hackett

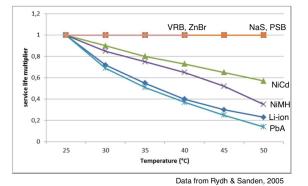
System Integration Architect, Redflow Limited

simon.hackett@redflow.com

redflow




- The Redflow ZBM2 Zinc-Bromine Flow Battery
- Standby Power System(SPS) mode
- Redflow energy system deployments at Grid Scale


SIGNIFICANT CHALLENGES WITH CONVENTIONAL BATTERIES

Deep Cycling Capacity Loss

High Temperature Life Reduction

Disposal Challenges

Thermal Runaway After Physical Damage or Fire

redflow

LITHIUM FIRES AT GRID SCALE: NOT JUST THEORETICAL

• Tesla Megapack (300MW/450MWh) Module Fire

30 July 2021

redflow

- Victoria, Australia
- 3 days to extinguish
- Major Air Quality Alert

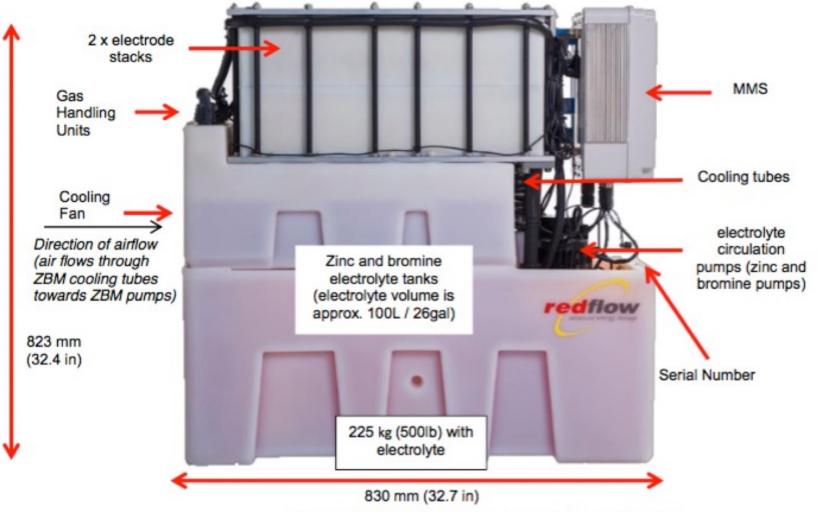
REDFLOW ZBM2 ZINC BROMINE FLOW BATTERY

Unique 10kWh energy storage module for long term, long time-base energy delivery

Technology Comparison

	ZBM2	Lithium-ion	Lead-acid
Competitive total cost of ownership	✓	✓	\checkmark
No material loss of output capacity with age	\checkmark	×	×
High ambient operating temperature does not reduce operating life	\checkmark	×	×
Daily 100% discharge without damage or reduced operating life	✓	×	×
Low risk of thermal runaway in a fire	\checkmark	×	\checkmark

Features


- Small enough to go where other flow batteries can't
- Scalable from one unit up to grid scale
- No damage if totally empty or if turned off
- Cloud-enabled advanced and smart BMS
- Recyclable HDPE plastic core
- Re-usable water-based zinc bromide electrolyte

redflow

REDFLOW ZBM2

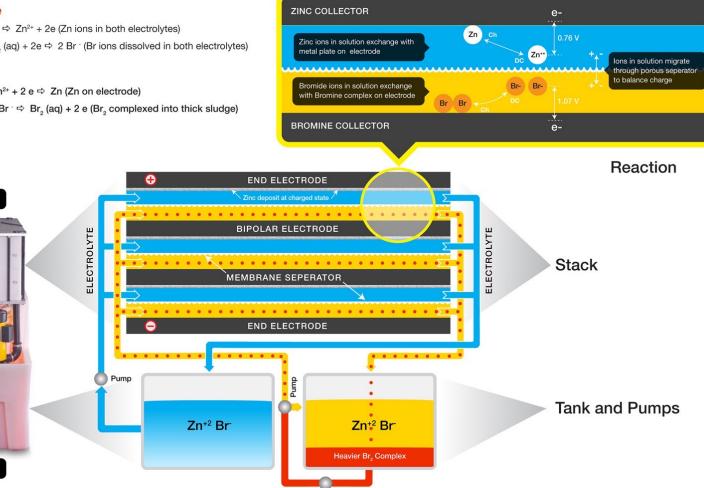
Gen 2.8 ZBM Zinc Bromine Battery Module

redflow

A ZINC ELECTROPLATING MACHINE MADE OF RECYCLABLE PLASTIC

At Discharge

Neg Electrode: Zn ⇒ Zn²⁺ + 2e (Zn ions in both electrolytes) Pos Electrode: $Br_{2}(aq) + 2e \Rightarrow 2 Br^{-}(Br ions dissolved in both electrolytes)$


At Charge

Stack

Tank

redflow

Neg Electrode: Zn²⁺ + 2 e ⇒ Zn (Zn on electrode) Pos Electrode: 2 Br \Rightarrow Br, (aq) + 2 e (Br, complexed into thick sludge)

GENERATION 3 Zinc Bromine Module

In pre-release testing now

Features

- New single stack replaces two stacks on Gen 2.5
- Improved tank design
- Redesigned electronics control module
- Designed for lower cost and scaled-up manufacture
- Baseline performance is the same, drops in to existing Redflow energy system designs with no change

redflow

Commercial solar and storage sites for local government in Victoria, Australia

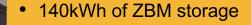
- 36 Redflow batteries across two child care centres combined with 180 kw PV solar panels. Maximisation of PV use, back up & grid independence
- Architectural Design/Green Architecture category in the 2019 International Architectural MasterPrize Awards
- Total battery energy throughput since commissioning: 75.2MWh

50 kWh Remote Telecom New Zealand

- Located in remote valley with no grid power
- Business case on cost of delivered diesel, maximising use or renewables & lower opex and enhanced reliability

60 kWh storage for remote telecommunications tower in Queensland for Optus

- Consisting of 6 ZBM2 batteries and diesel generator (previously running 24 hours per day)
- Deployed in environmentally sensitive high temperature Daintree rainforest deployment in Queensland, Australia
- Total Redflow estimated energy throughput since commissioning:7.4MWh (70% diesel runtime reduction).

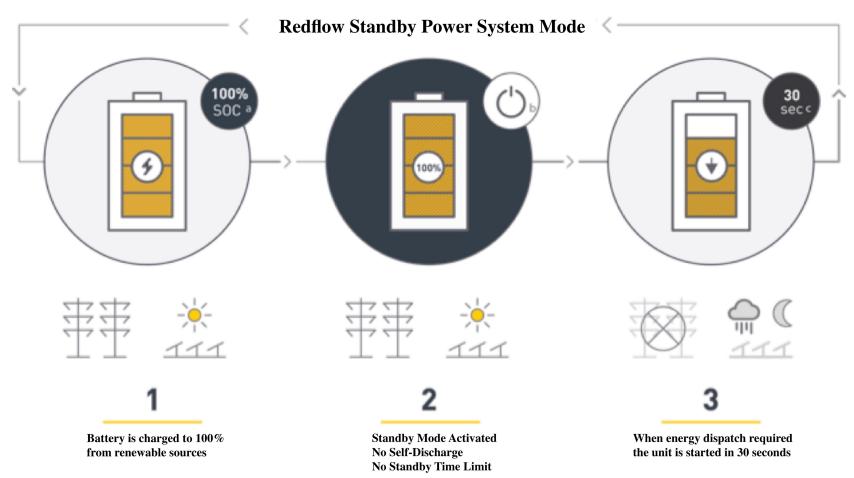


- Operates in a back-up power mode as lead-acid replacement.
- Long 10-year life expectancy bolsters business case versus lead-acid

 Provides a solution in high-theft environment where there is significant black market for lead-acid and lithium batteries. No black market for Redflow ZBMs!

Mobile phone towers South Africa

- Provides security against power outages and avoidance of peak power prices
- Keeps the PCB manufacturing line operating during grid outages, avoiding heavy wastage

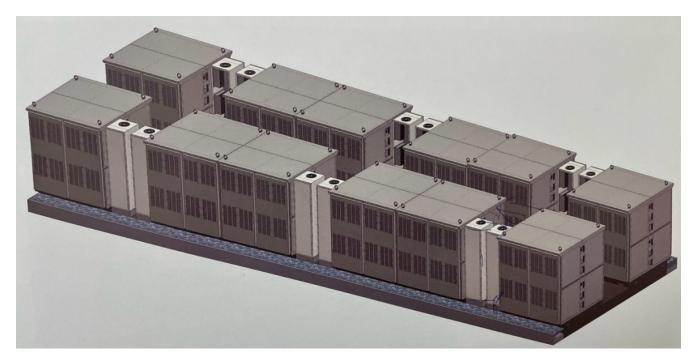


Power backup & peak charge avoidance at SA's largest PCB Manufacturer, Bosco Printed Circuits

REDFLOW STANDBY POWER SYSTEM MODE

The ZBM2 can hibernate (no self-discharge) – and wake up (much) later

redflow


ORCHESTRATED BY THE REDFLOW BMS

500 A 🔿														sustainable										
500A 450A 400A 350A 300A 分 	0	0) 0	0	0	0	0	-0	0	0	-0	0	0	0	-0	0			0	0	0	0	-0	-100% -75%
250A企 200A企 150A企 100A企 50A企																								50% 25%
0A— 50A↓																								-0%
ID	12:00 13:00 Serial 😧	14:00 15				19:00		21:00				01:00 mps 🕑							08:00		10:00 Firmw	11:00		ค
System			K 86.59					-	.2 AH	56.1		-73.3 A			34.3 C			•						-
RUN MO							•																	
3	219060028	0	K <mark>48.3%</mark>		С	D	ĺ	96	.7 AH	56.2	v ·	-36.6 A	-2.1	kW	34.3 C		3h56	m	2	2d20h	32	.19.00	Run	(702)
5	219030057	0	K 99.2	%	С	D	l	198	.4 AH	53.2	V	0.0 A	0.0	kW	31.7 C		2d4	4h	19	h36m	32	.19.00	Run	(702)
7	219060027	0	K 99.2	%	С	DE	ĩ	198	.3 AH	53.2	V	0.0 A	0.0	kW	33.7 C		2d	4h	20	h22m	32	.19.00	Run	(702)
8	219030052	0	K 46.4%	,	С	D	l	92	.8 AH	56.1	v	-36.7 A	-2.1	kW	32.5 C		4h22	m	2	2d20h	32	.19.00	Run	(702)
12	219060020	0	K 99.3	% -	С	D	ĺ	198	.5 AH	53.3	V	0.0 A	0.0	kW	34.3 C		1d8	Bh	1	d20h	32	.19.00	Run	(702)
13	219060018	0	K 99.1	%	С	D	ĵ	198	.3 AH	53.1	V	0.0 A	0.0	kW	33.7 C		1d	7h	1	d17h	32	.19.00	Run	(702)
STANDE	Y MODE																							
1	219030058	0	K 99.1	%	С	D	l	179	.9 AH	50.8	V	0.0 A	0.0	kW	28.5 C		3d4	4h	17	h36m	32	.19.00	Sps	(782)
2	219060031	0	K 99.1	%	С	D	ĺ	179	.9 AH	50.9	V	0.0 A	0.0	kW	30.1 C		3d3	3h	18	h54m	32	.19.00	Sps	(782)
4	219030049	0	K 99.1	%	С	D	I	179	.9 AH	51.0	V	0.0 A	0.0	kW	28.7 C		3d	4h	1	8h3m	32	.19.00	Sps	(782)
6	219060023	0	K 99.1	%	С	D	l	179	.9 AH	50.9	V	0.0 A	0.0	kW	29.8 C		3d3	3h	1	8h2m	32	.19.00	Sps	(782)
9	219030050	0	K 99.1	%	С	DE	ĩ	179	.9 AH	50.8	V	0.0 A	0.0	kW	27.9 C		3d3	3h	18	h47m	32	.19.00	Sps	(782)
10	219050036	0	K 99.1	%	С	D	ĵ	179	.9 AH	51.0	V	0.0 A	0.0	kW	29.2 C		3d3	3h	18	h33m	32	.19.00	Sps	(782)
11	219030055	0	K 99.1	%	С	DE	l	179	.9 AH	50.9	V	0.0 A	0.0	kW	28.1 C		3d3	3h	1	9h1m	32	.19.00	Sps	(782)
14	219030047	0	K 99.1	% -	С	D	ĺ	179	.9 AH	50.8	V	0.0 A	0.0	kW	28.1 C		3d3	3h	18	h50m	32	.19.00	Sps	(782)

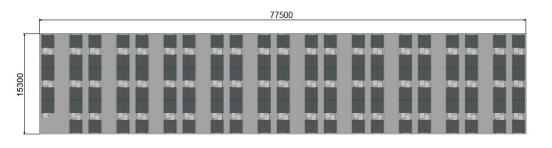
POD-Z: MODULAR, GRID-SCALE REDFLOW DEPLOYMENTS

MODULAR DEPLOYMENT SYSTEM: 160kWh per POD HORIZONTALLY SCALEABLE WITHOUT FIXED UPPER LIMIT

Redflow 48V DC Batteries in a 16 node cluster with BMS (50kW / 160kWh per Pod)

Trumpf Hüttinger DCDC Conversion Module Cluster (48 V <-> 650-950V Bidirectional conversion)

Direct HVDC output or optional internal Trumpf AC modules


redflow

Energy Pod Z for Larger Systems

Example 20 MWh System

CONCEPT DRAWING

Key Design Inputs

- Available footprint
- Application requirements
- Load profile
- Energy v power requirements
- AC or DC design inverter and Energy Management System selection
- Auxiliary features

Micro Grid and Smart Grid

Transmission and Distribution Deferral

POD-Z: MODULAR, GRID-SCALE REDFLOW DEPLOYMENTS

2MWh energy storage system for the Anaergia Rialto Bioenergy Facility in southern California

redflow

GRID SCALABLE FLOW BATTERIES

SUBSTANTIAL ROLE FOR LONG DURATION STORAGE USING FLOW BATTERIES CAN CREATE HYBRID OF LONG DURATION FLOW + HIGH IMPULSE POWER LITHIUM

"PUMPED HYDRO" OPERATING CYCLE

AVOID CAPACITY LOSS WITH AGE

UNLIMITED STANDBY TIME WITHOUT ENERGY LOSS

100% DISCHARGE DEPTH ENERGY WHEN DELIVERED

NOT AT RISK OF THERMAL RUNAWAY

STRONG RECYCLING STORY

redflow

THANK YOU

